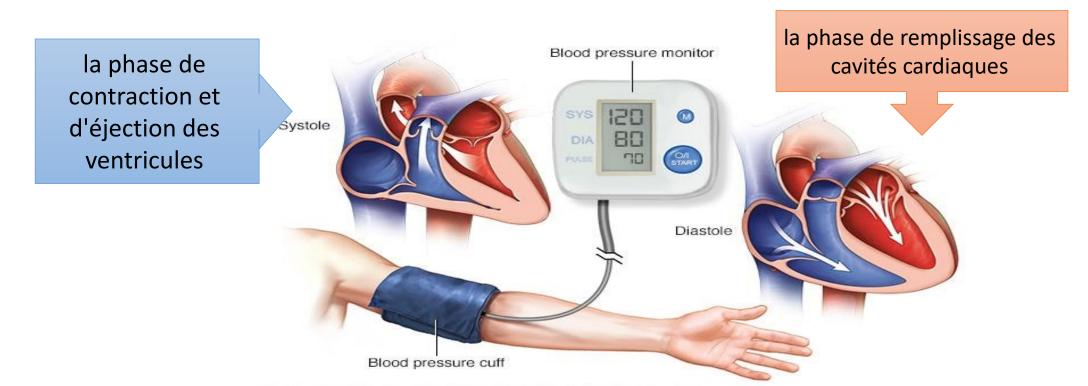
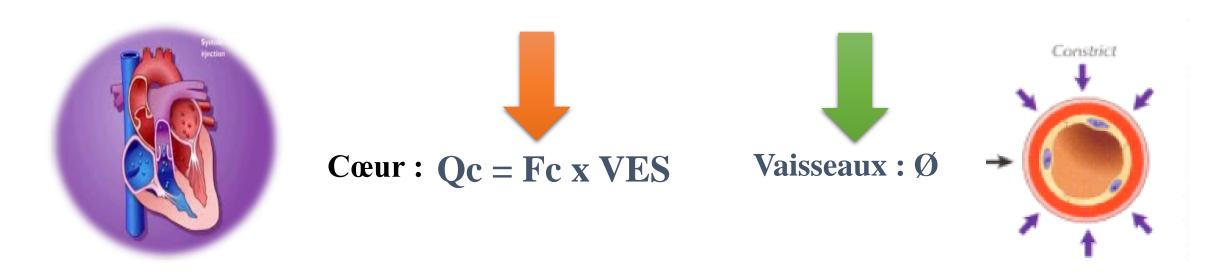

Les médicaments du système cardiovasculaire

LES

ANTIHYPERTENSEURS

Présenté par Dr: K. ABDELHADI



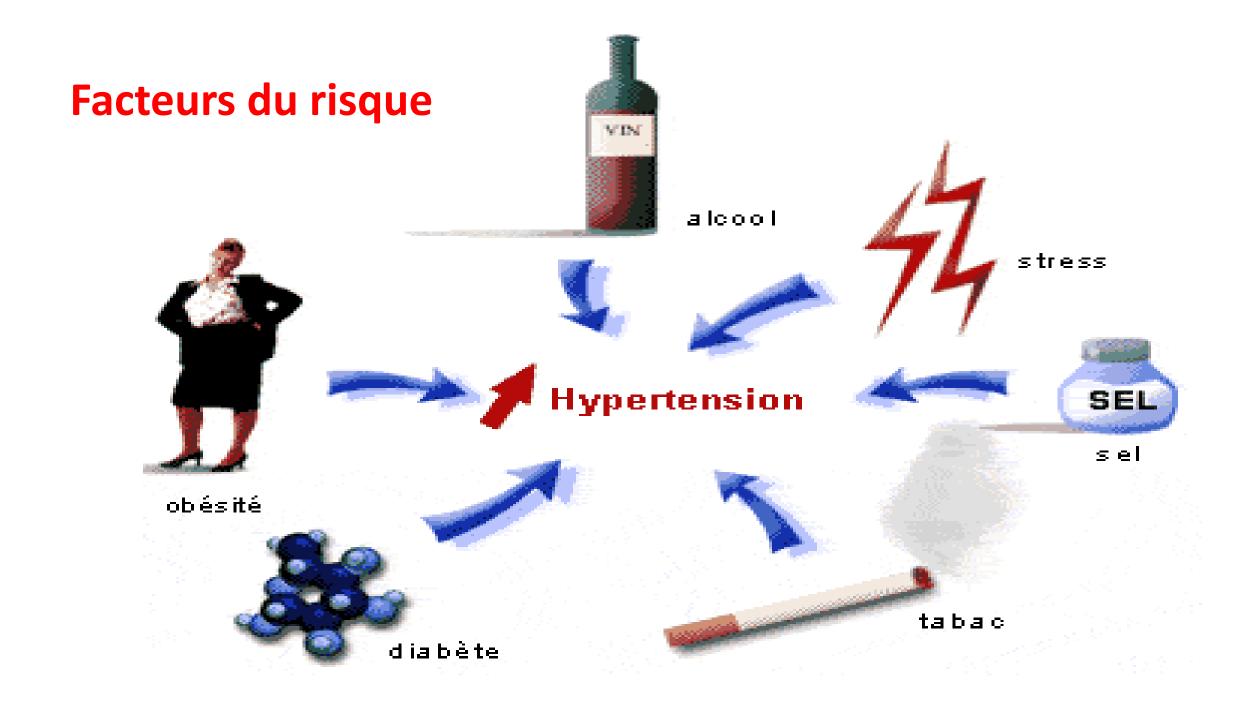

LA TENSION ARTÉRIELLE

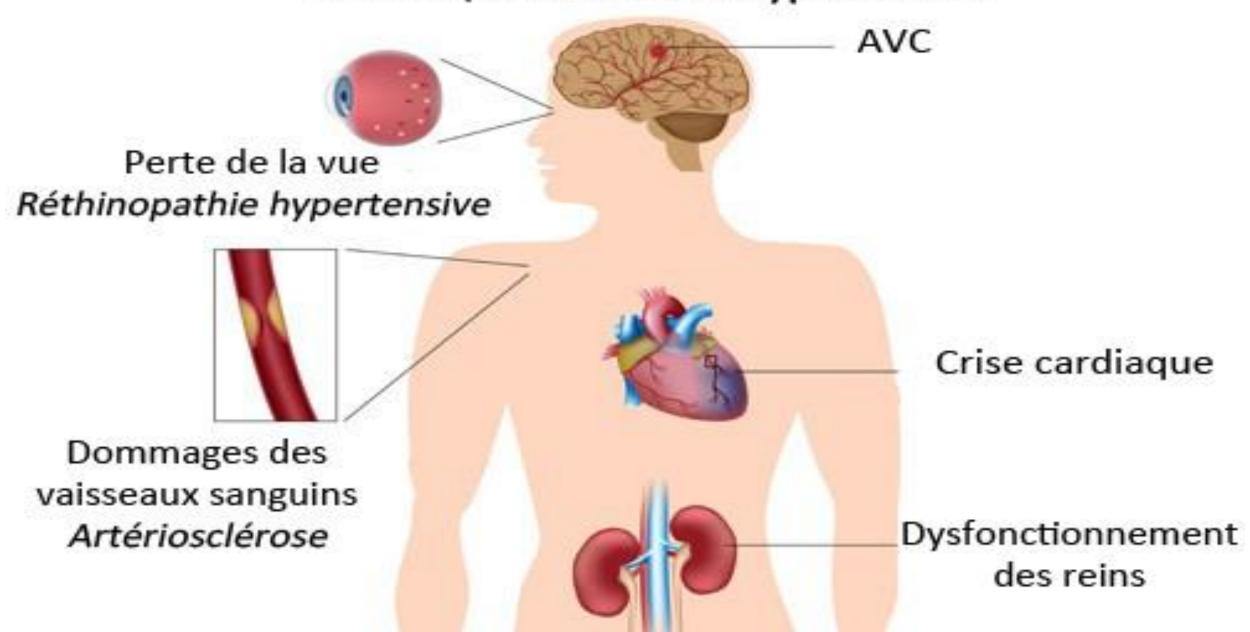
La pression artérielle est la force exercée par le sang sur les parois artérielles, elle s'exprime en mmHg, par deux chiffres:

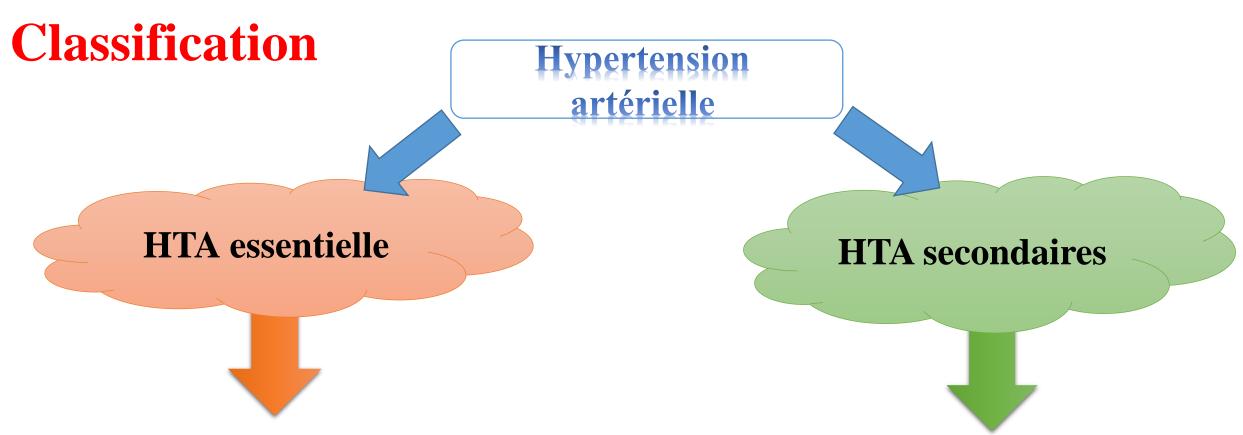
- -la pression maximale au cours de la systole(PAS) : dépend du débit cardiaque et de l'élasticité des artères.
- -la pression minimale au cours de la diastole(PAD) : dépend de la vitesse d'écoulement du sang.

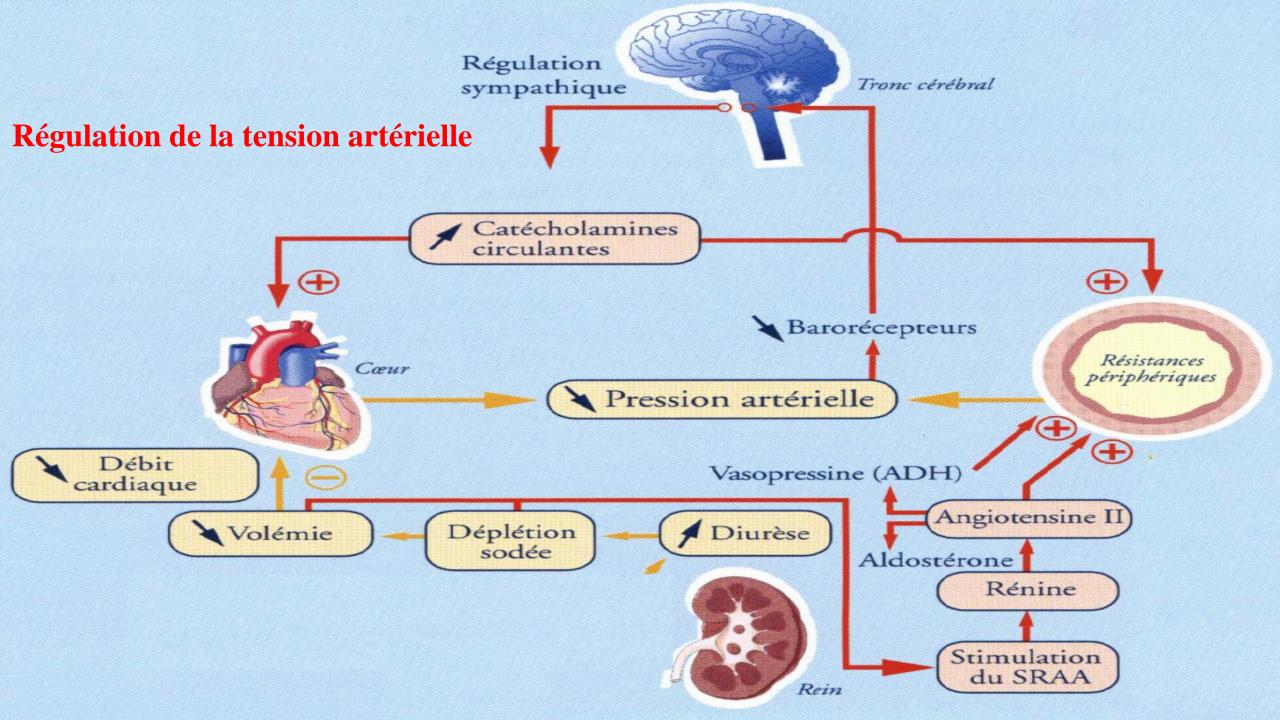
Pression artérielle = Débit X Résistance périphérique

- (Fc): la fréquence des battements cardiaques
- (VES): volume d'éjection systolique :




Une élévation de la pression artérielle dans les artères.


la pression artérielle systolique ≥ 140 mm Hg la pression artérielle diastolique ≥ 90 mm Hg


Les complications de l'hypertension

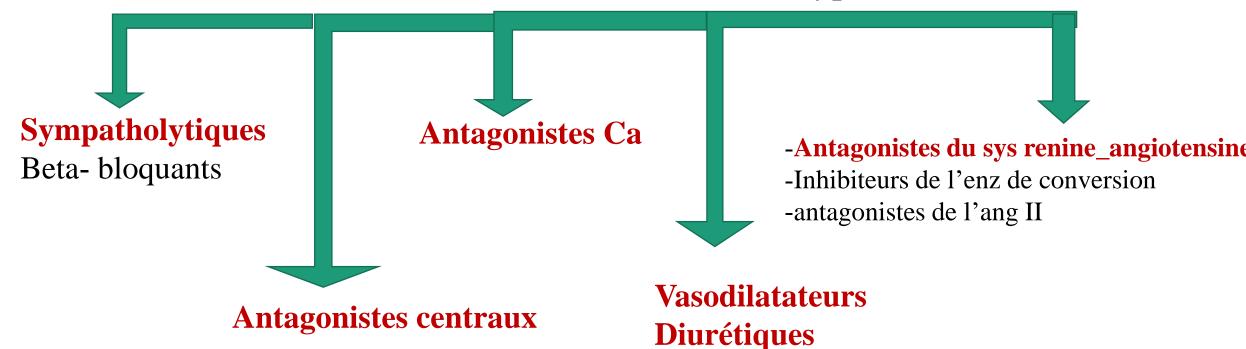
- ✓ la plus fréquente
- ✓ sans cause apparente, mais associée à des facteurs de risque: âge, génétique, alcool, tabac obésité, diabète, troubles lipidiques

✓ associée à des causes adjacentes: sténose de l'artère rénale, HT gravidique, médicaments, intoxications

Régulation de la tension artérielle

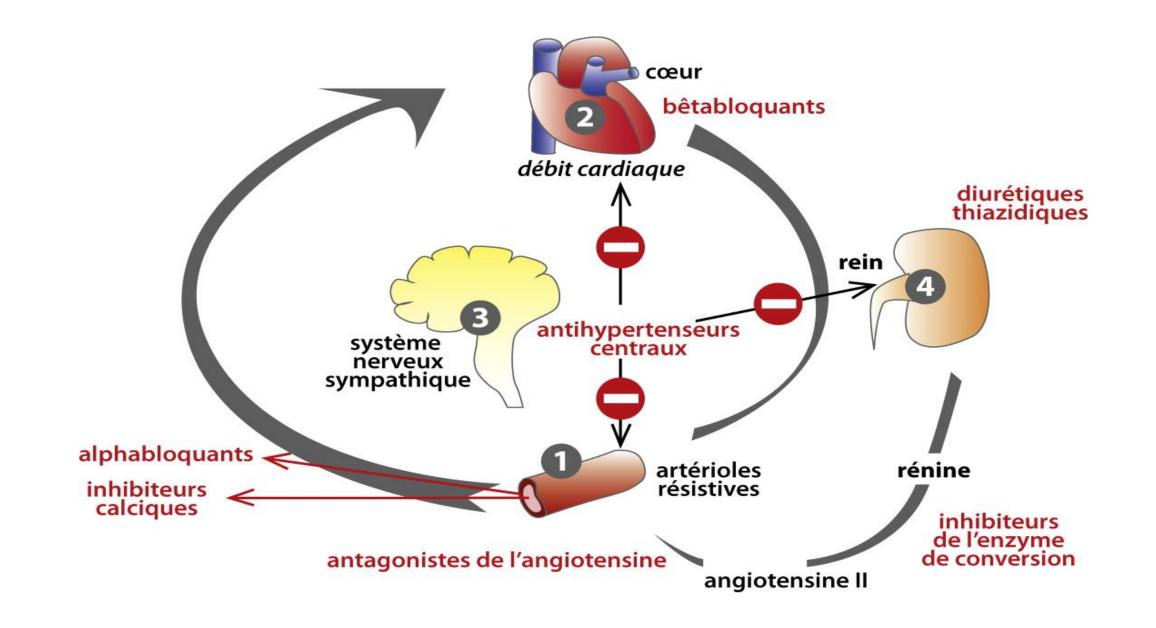
Physiopathologie de l'HTA

- Augmentation du débit avec (RP) normale, mais plus souvent, le débit est normal alors que les RP sont élevées
- Sténose rénale et hyper activité de la rénine
- Réajustement du baro reflexe à des valeurs plus élevées.
- Augmentation de l'apport sodé.




I. DEFINITIONS DES ANTIHYPERTENSEURS:

Les antihypertenseurs sont des médicaments qui ramènent à la normale la pression artérielle anormalement élevée, sans présenter d'effet hypotenseur.


CLASSIFICATION

-Mécanisme d'action -site d'action antihypertenseurs

LES ANTIHYPERTENSEURS

1/ SYMPATOLYTIQUES CENTRAUX

On les classe chimiquement en deux types:

-dérivés de type catécholamine: méthyl dopa

-dérivés de l'imidazole: clonidine

1. La METHYL-DOPA

-C'est le plus ancien des antihypertenseurs centraux

structure chimique:

Elle ne diffère de la dopa que par la présence d'un méthyl en α d'où le nom ancien α -méthyl dopa

NS: Acide (2S)-2-amino-3-(3,4-dihydroxyphényl)-2-

méthylpropanoique DCI: méthyldopa

NC: ALDOMET®

Caractères physicochimiques:

Amino-acide:

peu soluble dans l'eau, facilement soluble dans les acides et les bases.

Catéchol:

-facilement oxydable (air, lumière).

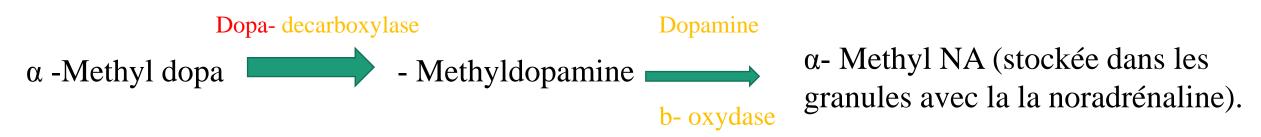
donc elle donne la réaction colorée des catéchols

- → couleur verte avec FeCl3
- ---- couleur **rouge-brun** avec le nitrate d'argent ammoniacal

Mécanisme d'action:

Dopa- decarboxylase

Dopamine


α -Methyl dopa

- Methyldopamine

α- Methyl NA (stockée dans les granules avec la NA).

b- oxydase

Mécanisme d'action:

lors d'une stimulation sympathique, la MD est libérée et active les récepteurs alpha-adrenergiques, de la même façon que la NA,

mais avec un effet plus faible (agoniste partiel): c'est un faux

neurotransmetteur

L'activité thérapeutique est liée à son effet central.

Indications:

-elle est de + en + rarement utilisée dans le trt d'HTA,

continue à être employée dans le traitement d'HTA gravidique.

-elle est contre-indiquée chez les HT ayant présentés des anémies hémolytiques ou des états dépressifs

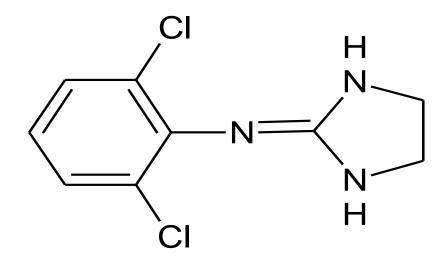
Contrôle:

substances apparentées: (CCM, CLHP: méthoxyméthyldopa)

Dosage: base organique en milieu non aqueux (HClO₄),

1.2. clonidine

Structure chimique:

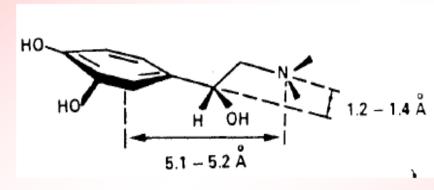

C'est un dérivé de l'imidazoline

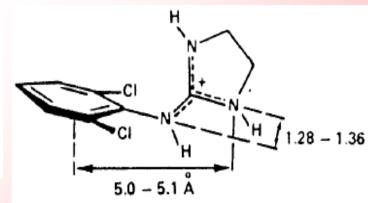
NS: *N*-(2,6-dichlorophényl) imidazolidin-2-imine

DCI: Clonidine

Caractères physico-chimiques:

- -Base monovalente
- -pKa = 8
- -sel cristallisé utilisé en thérapeutique: chlorhydrate de clonidine
- -solubles dans l'eau : (administration IM,IV et perf: clonidine).




Relation structure-activité:

conformation planaire impossible (rotation de 90°): conformation non coplanaire

La disubstitution en ortho par deux Cl empèche la coplanéité de la molécule

interaction avec le récepteur α-adrénergique et/ou avec les récepteurs (ou sites de liaison) des imidazolines

Mécanisme d'action:

-Stimulation des récepteurs α2 centraux => \ du tonus sympathique => \ de la libération des catécholamines.

- -An niveau périphérique : la clonidine diminue la sécrétion de la Noradr par action sur les récepteurs α2 présynaptiques.
- -Elle agit également sur les récepteurs des imidazolines.

Indication:

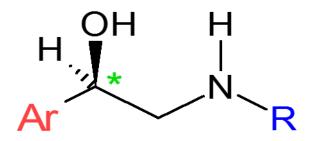
L'indication actuelle est l'hypertension artérielle essentielle, et la crise hypertensive avec un effet sédatif.

2. Beta bloquants

Historique:

- -L'historique proprement dit commence en 1964 avec les études de Black sur le propranolol, puis l'introduction de cette molécule en thérapeutique, proposé dans le trt d'angor.
 - -propranolol manifeste au cours des études cliniques une puissante activité antiHT
 - -sur le modèle de propranolol ,de nombreux analogues structuraux ont été préparés et étudiés.
- -la mise en évidence d'effet sur la pression intra-oculaire est à l'origine de la préparation de certains collyres anti-glaucomateux.

Structure chimique: -phényléthanolamines


-aryloxypropanolamines

On note la présence d'un C*, mais la plupart des produits du commerce sont des racémiques.

Les principaux produits commercialisés:

La DCI de ces composés comporte le suffixe « alol » dans le cas des phényléthanolamines et « olol » dans le cas des aryloxypropanolamines.

a. Dérivés de structure phényléthanolamine

Ar	R	DCI	ND
H_3C-SO_2-NH-	-CH(CH ₃) ₂	Sotalol	SOTALEX*
HO————————————————————————————————————	CH_{3} $ (CH_{2})_{2}-C_{6}H_{5}$	Labétalol	TRANDATE*

b. Dérivés de structure aryloxypropanolamine :

Ar est un cycle benzénique monosubstiué en ortho :

Ar	R	DCI	ND
CH ₂ —CH=CH ₂	-CH(CH ₃) ₂	Alprénolol	

• Ar est un cycle benzénique monosubstitué en para

Ar	R	DCI	ND
H_2N	-CH(CH ₃) ₂	Aténolol	TENORMINE*
H_3C CH_3 $CH_2)_2$ $CH_2)_2$	-CH(CH ₃) ₂	Bisoprolol	DETENSIEL*

•Ar est un cycle benzénique polysubstitué :

Ar	R	DCI	ND
H_7C_3 NH CH_3	-CH(CH ₃) ₂	Acébutolol	SECTRAL*

Acébutolol : 3-acétyl-4-(2-hydroxy-3-isopropylamino propoxy) butyranilide

• Ar est un carbocycle bicyclique ou un hétérocycle simple ou condensé :

Ar	R	DCI	ND
	CH(CH ₃) ₂	Propranolol	AVLOCARDYL*
HN	-C(CH ₃) ₃	Cartéolol	CARTEOL*

Propranolol: 1-(1-naphtyloxy)-3-isopropylamino propan-2-ol

Application: ATENOLOL

4-hydroxy-phénylacétamide + épichlorhydrine ,en présence de pipéridine comme catalyseur.

-époxyde + isopropylamine => Aténolol

Caractères physico-chimiques:

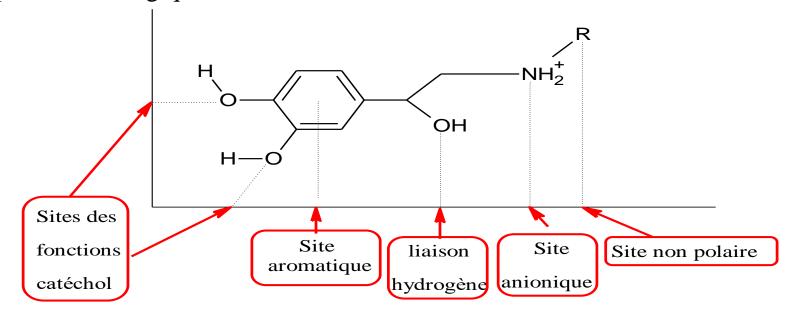
poudres cristallines blanches ou légèrement colorées

bases monovalentes; insolubles dans l'eau;

-hydrophilie/lipophilie:

les plus hydrophiles aténolol, nadolol sotalol. les plus lipophiles alprénolol, oxprénolol, propranolol,

Relation structure-activité:

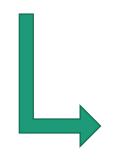

- -les β-bloqueurs présentent des relations structurales étroites avec les catécholamines.
- -l'enchainement β-amino-alcool est nécessaire à l'effet sur les récepteurs adrénergiques.
- -la présence sur la chaine basique d'un substituant encombrant Contribue à l'affinité pour les récepteurs β .

On a trois sites de liaison avec les récepteurs adrénergiques:

-gpt aryle (intéraction π).

-OH (liaison hydrogène).

-azote (liaison ionique).



La position relative de ces trois pôles d'intéraction s'avère essentielle à l'activité des β -bloqueurs.

Mécanisme d'action:

```
Blocage β
```

```
β1:- inotrope - (contractilité),
bathmotrope - (excitabilité)
-dromotrope - (conductibilité)
chronotrope - (fréquence cardiaque) ( cœur )
```


β2: -vaso et bronchoconstriction (vaisseaux et bronches)

Effets pharmacologiques:

1-inhibition β-adrénergique:

acébutolol, aténolol (b-bloquants cardiosélectifs)

```
-cœur: β1 => :- inotrope _,bathmotrope _
-dromotrope _,chronotrope_
```

Propranolol (b-bloquant non-cardioséléctif)

- -cœur b1
- -vaisseaux: $\beta 2 => vasoconstriction$
- -bronches: $\beta 2 =>$ bronchoconstriction
- -rein: β1=> \ rénine
- -œil: β 1=> \ de la pression intra-oculaire

Indications:

- -HTA
- -insuffisance coronarienne
- -arythmies
- -glaucome

3. Antagonistes du système rénineangiotensine

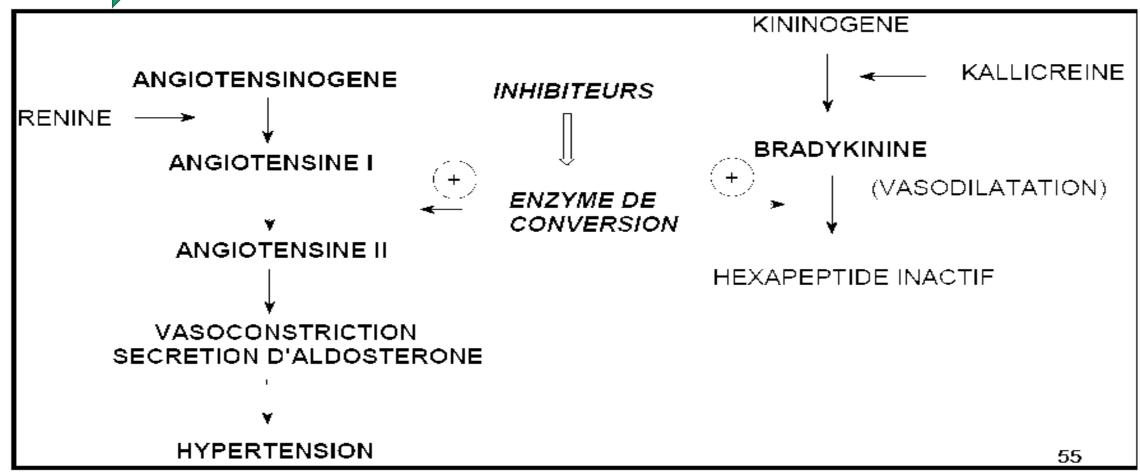
On a deux classes:

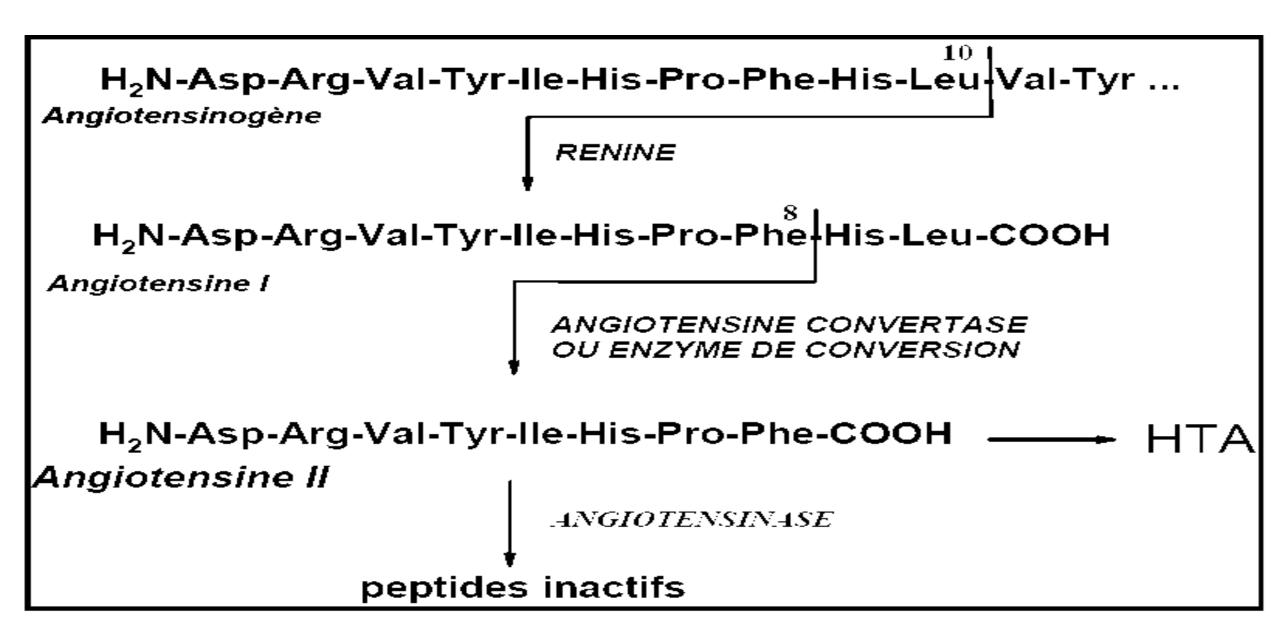
les inhibiteurs de l'enzyme de convertion IEC

les antagonistes des récepteurs AT-1 de l'angiotensine II

3.1. Les inhibiteurs de l'enzyme de conversion

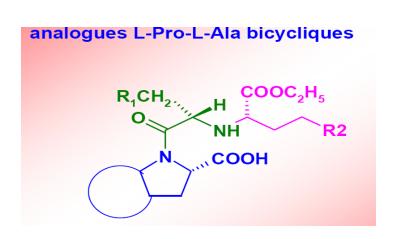
• **Historique:**


FERREIRA: découverte dans le venin de vipères bréziliennes de peptides présentant des propriétés potentialisatrices de la bradykinine (Bradykinin Potentiating Peptides)


```
p-Glu-Lys-Trp-Ala-Pro-OH BPP5a SQ 20475
p-Glu-Trp-Pro-Arg-Pro-Ala-Ile-Pro-Pro-OH BPP9 SQ 20881
téprotide
```

- ONDETTI (SQUIBB) détermine la structure du téprotide et en réalise la synthèse. Testé chez l'Animal, le téprotide→↓TA

EC = une cible thérapeutique intéressante



EC = enzyme membranaire dont la structure n'était pas connue à l'époque.

Les principaux composés:

L-Alanine

R

DCI

ND

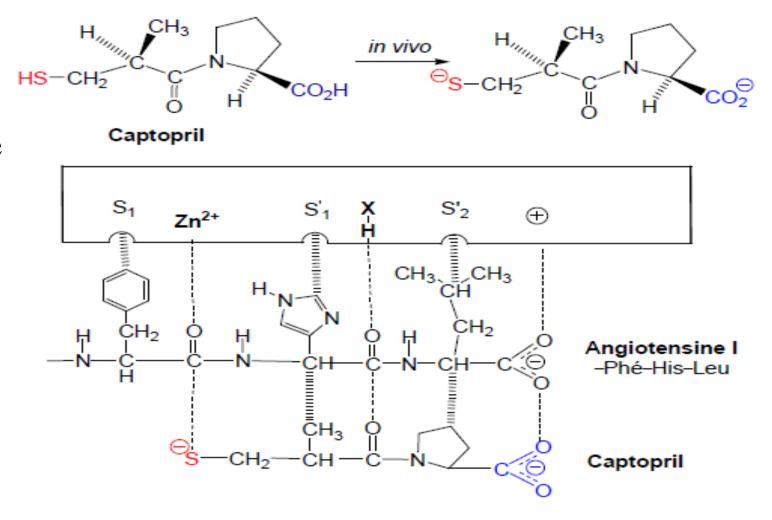
CARACTÈRES PHYSICOCHIMIQUES:

-poudres blanches (odeur soufrée: captopril);

-acides: 2,5 <pKa<3,7;

-sels solubles dans l'eau:

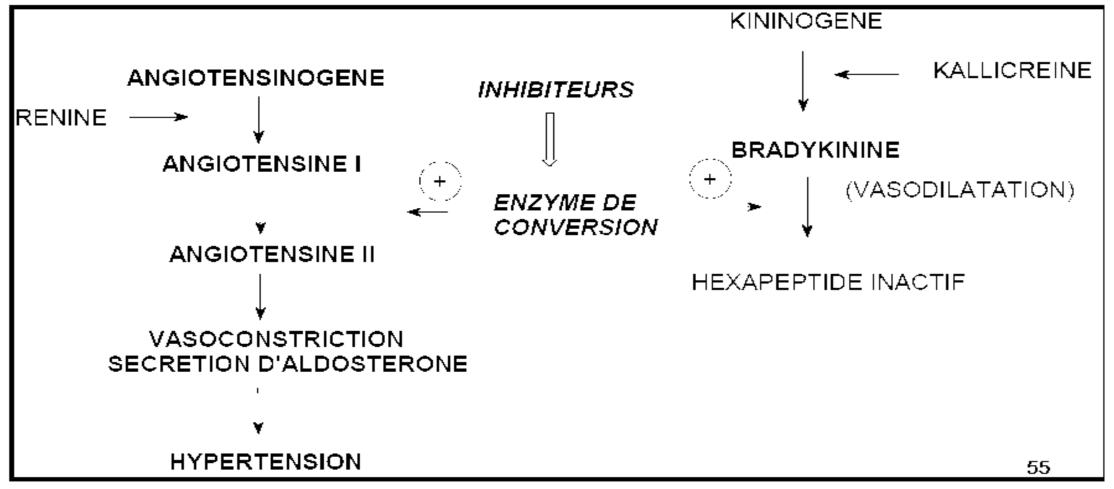
chlorhydrates, (énalapril),


Relation structure-affinité EC:

Captopril= analogue de L-Proline-L-Alanine: a 3 sites de liaison thiol :

complexation du zinc,

carboxamide: liaison H,


carboxylate: liaison ionique

Mode d'action:

EC = une cible thérapeutique intéressante

Indications:

- -HTA essentielle
- -HTA du diabétique
- -Nephropathie
- -Insuffisance cardiaque

Contre-indications:

- -Allergie
- -Oedeme de Quinke
- -Grossesse

Contrôle analytique:

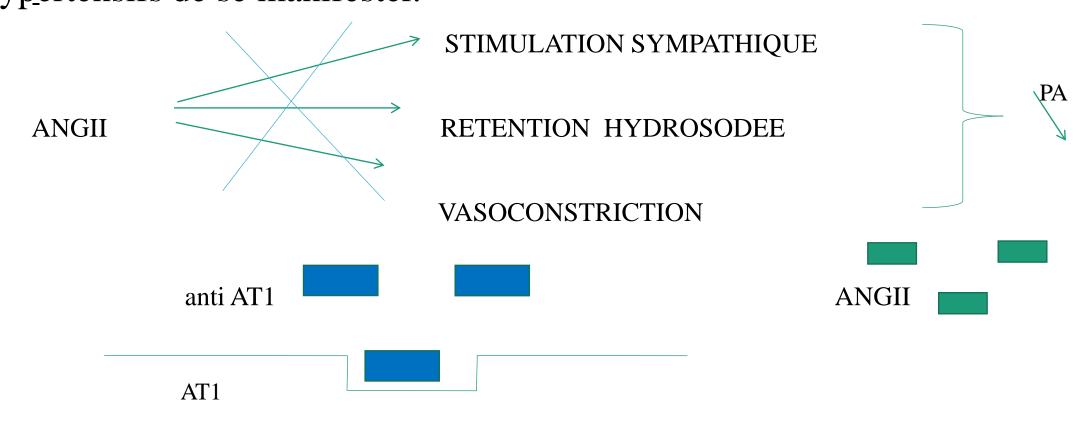
Essai: [α]D, substances apparentées, teneur en eau ...

Dosage: de la fonction COOH

de la fonction thiol: (pouvoir réducteur, dérivé S-nitroso: captopril)

3.2. Les antagonistes des récepteurs AT1 de l'angiotensine II:

Structure chimique:


Ce sont des dérivés de biphényle, porteur d'un tétrazole (équivalent à un acide carboxylique.

Les principaux produits:

R	DCI	ND		
CI N OH	Losartan	COOZAR*		
	Irbésartan	APROVEL*		
H ₃ C CH ₃	Valsartan	COTAREG*		

Mécanisme d'action:

- c'est un antagoniste sélectif des récepteurs de l'ANGII.
- -bloque la liaison de l'ANGII à ses récepteurs ,dont il empèche les effets hypertensifs de se manifester.

Emploi: HTA essentielle

4.Les antagonistes calciques

Historique:

Le concept d'antagoniste calcique a été introduit indépendamment à la fin des années 1960 par FLECKENSTEIN et par GODFRAIND (Belgique).

Ils ont remarqué qu'Au cours de l'HTA, une Îde la [Ca++] intracellulaire qui favorise Îdes RP et Îde la PA

=> inhibiteurs des canaux Ca2+de classe L (Low inactivation), se lient sur les boucles extracellulaires de la sous-unité α de ces canaux, impliquée dans la formation des pores ioniques.

Structure chimique: on a trois classes:

DHP

Phenylalkylamine

Benzothiazepines

(ADALATE*)

Vaisseaux

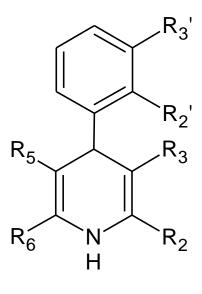
VERAPAMIL

(ISOPTINE*)

Cœur

DILTIAZEM

(TILDIEM*)



Mixte

Les principaux produits utilisés en thérapeutique:

A_1,4-dihydropyridines.

Structure chimique:

DCI	NC	\mathbb{R}^2	\mathbb{R}^6	\mathbb{R}^3	\mathbb{R}^5	$ \mathbf{R}^{2'} $	\mathbb{R}^{3}
Nifédipine	ADALAT E	CH ₃	CH ₃	COOCH ₃	COOCH ₃	NO ₂	Н
Nicardipine	LOXEN®	CH ₃	CH ₃	COOCH ₃	O CH ₃	Н	NO ₂
Amlodipine	AMLOR®	CH ₃	H ₂ C-O-(CH ₂) ₂ -NH ₂	COOCH ₃	COOC ₂ H ₅	Cl	Н

Structure et nomenclature:

EX: Nifédipine

c'est 2,6-diméthyl-3,5 —dicarboxylate de diméthyl — 4-(2-nitrosophényl) -1,4-dihydropyridine

B- Phényl alkylamines:

VERAPAMIL

Structure et nomenclature:

(2*RS*)-2-(3,4-diméthoxyphényl)-5[[2-(3,4-diméthoxyphényl)éthyl] (méthyl)amino]-2(1-méthyléthyl)pentanenitrile

C − **1,5**- **Benzothiazépines**:

DILTHIAZEM:

Structure chimique et nomenclature:

Diltiazem MONOTILDIEM ®

Le seul énantiomère (+)-cis ou(+)-(2S,3S) est actif

3-cis acétoxy-5-Diméthylaminoéthyl-2-cis (4-méthoxyphényl)-4-oxo-2,3-dihydro-1,5 benzothiazépine

Propriétés physico-chimiques:

1-DHP:

- -poudres cristallines jaune-vert, pratiquement insolubles dans l'eau.
- -lipophiles.
- -nicardipine, amlodipine: amines => sels (peu solubles dans l'eau),
- -instabilité à la lumière(nitrosophénylpyridine, nitrophénylpyridine)et en milieu fortement acide ou basique

2-phénylalkylamines:

-base monovalente.

=> sels (chlorhydrate):

-poudre blanche soluble dans l'eau, -assez soluble dans l'éthanol

3-Benzothiazépines:

base monovalente, chlorhydrate: poudre blanche, très soluble dans l'eau, caractère très lipophilede.

Indications:

-HTA

-angor stable

Ca

Ca =>

Ca $Ca \Rightarrow$

VAISSEAUX:Relaxation du muscle arteriolaire lisse

Contrôle analytique:

1-dihydropyrines:

Identification: F°C, UV, IR, colorant azoïque après réduction des dérivés nitrés;

Essai: recherche des impuretés de préparation(esters symétriques / dissymétriques) et de dégradation;

Dosage:

- -spectrométrie UV,
- -dosage des bases en milieu non aqueux,
- -oxydimétrie en présence de ferroïne.

Phénylalkylamines:

Identification: UV, IR, CCM

Essai: substances apparentées (très nombreuses): CLHP

Dosage du chlorhydrate: dissolution dans l'éthanol;

dosage par NaOH 0,1 M.

3- les benzothiazépines:

-Identification: IR, CLHP.

-Essai: [α]D, substances apparentées (désacétyl-diltiazem).

-Dosage: UV, dosage des sels halogénés, de bases organiques en milieu non aqueux.