Faculté de Médecine de Batna Département de Pharmacie

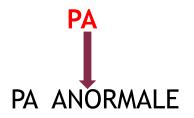
Cours de Chimie Thérapeutique

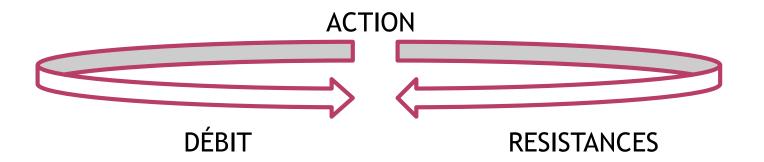
Les antihypertenseurs

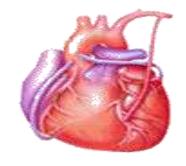

Dr. AISSAOUI M.D.

CLASSIFICATION DES MCV:

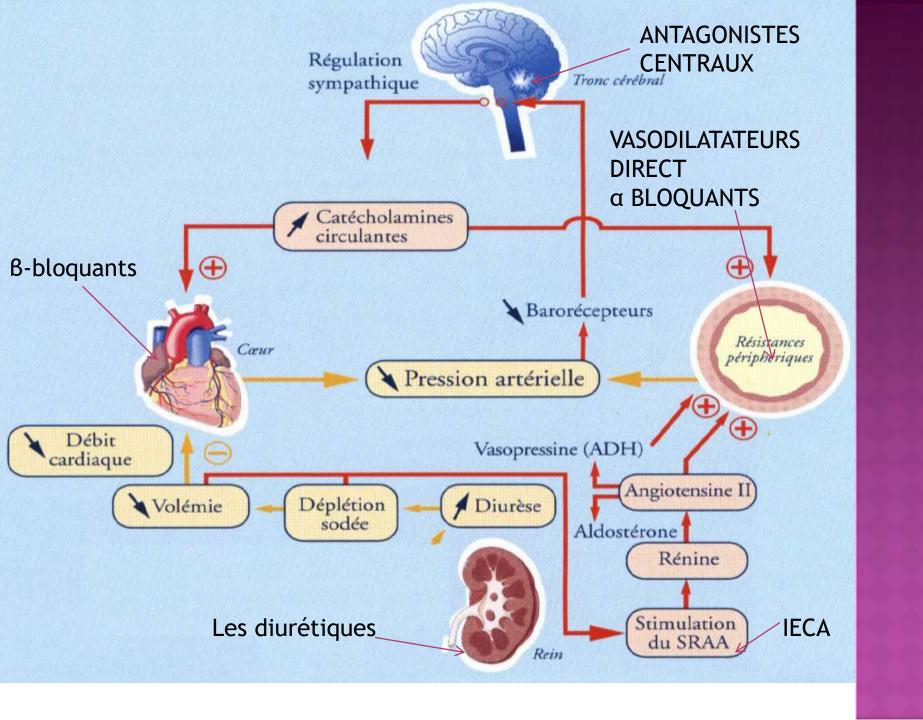
1-les anti-hypertenseurs


- 2- les anti-angoreux
- 3- les anti-arythmiques
- 4- les cardiotoniques
- 5- les médicaments de l'hémostase


LES ANTIHYPERTENSEURS


Definition:

Ce sont des médicaments qui amènent à la normale une pression artérielle anormalement élevée , ils n'ont pas d'effet hypotenseur.



CLASSIFICATION

-Mécanisme d'action -site d'action antihypertenseurs **Sympatholytiques Vasodilatateurs** Beta- bloquants Antagonistes **Diuretiques** Ca Antagoristes du sys renine _angiotensine -Inhibiteurs de l'enz **Antagonistes** de conversion centraux -antagonistes de l'angll

1/ SYMPATOLYTIQUES CENTRAUX

On les classe chimiquement en deux types:

-dérivés de type catécholamine: méthyl dopa

-dérivés de l'imidazole: clonidine

-C'est le plus ancien des antihypertenseurs centraux

structure chimique:

Elle ne diffère de la dopa que par la présence d'un méthyl en α d'où le nom ancien α -méthyl dopa

HO

NH₃+

$$\alpha$$
-méthyl-3,4-dihydroxy- $L(-)$ -phénylalanine
(sesquihydrate = 1,5 H₂O)

ALDOMET*

Mécanisme d'action:

Dopa- decarboxylase α -Methyl dopa \rightarrow α - Methyldopamine β - oxydase

α- Methyl NA (stockée dans les granules avec la NA).

L'activité thérapeutique est liée à son effet central.

Lors d'une stimulation sympathique, la MD est libérée et active les récepteurs alpha-adrenergiques, de la même façon que la NA, mais avec un effet plus faible (agoniste partiel): c'est un faux neurotransmetteur

1.2. CLONIDINE

Structure chimique:

C'est un dérivé de l'imidazoline

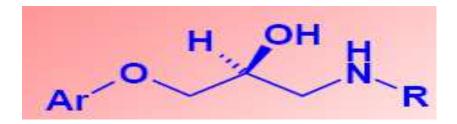
Relation structure-activité:

conformation planaire impossible (rotation de 90°): conformation non coplanaire

La disubstitution en ortho par deux Cl Empèche la coplanéité de la molécule

Mécanisme d'action:

-Stimulation des récepteurs $\alpha 2$ centraux => $\sqrt{}$ du tonus sympathique => $\sqrt{}$ de la libération des catécholamines.


-Elle agit également sur les récepteurs des imidazolines.

2. BETA BLOQUANTS

Structure chimique:

-Phényléthanolamines

-Aryloxypropanolamines

On note la présence d'un C*, mais la plupart des produits du commerce sont des racémiques.

Les principaux produits commercialisés:

Aryloxypropanolamines (DCI:...olol)

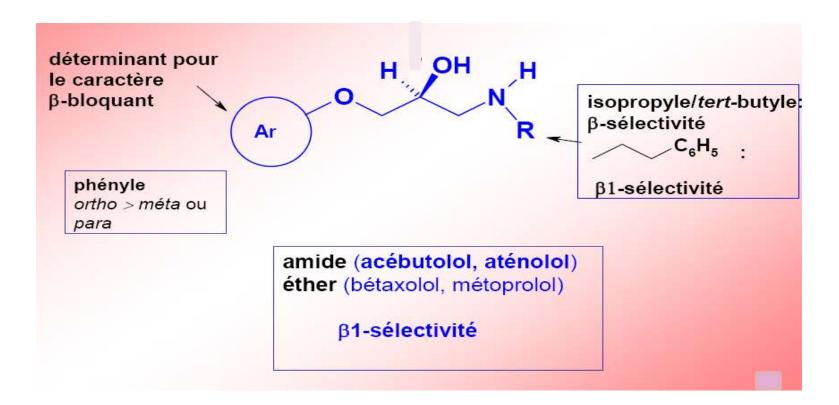
Ar = cycle benzénique monosubstitué en *ortho*

Ar	R	DCI	ND
CT _o ~	-CH(CH ₃) ₂	oxprénolol (HCl)	Trasicor®
Ar = cycle benzé Ar	nique polysubs R	titué DCI	ND
H ₇ C ₃ N CH ₃	-CH(CI	acébutol H ₃) ₂ (HCl)	ol Sectral [®]
(H ₃ CH ₂ C) ₂ N N	о -C(CH	l ₃) ₃ céliprolo	Célectol®

Ar = cycle benzénique monosubstitué en para

Ar	R	DCI	ND
H ₃ C N	-CH(CH ₃) ₂	aténolol	Bétatop [®] Ténormine [®]
H ₃ C ₀	-CH(CH ₃) ₂	métoprolol (tartrate)	Lopressor [®] Seloken(LP) [®]
	-CH(CH ₃) ₂	bétaxolol (HCI)	Kerlone® Bétoptic®
H ₃ C O CH ₃	-CH(CH ₃) ₂	bisoprolol (hémifumarate)	Détensiel [®]
H ₃ CO	-CH(CH ₃) ₂	esmolol (HCl)	Brévibloc®

Ar = carbocycle bicyclique ou hétérocycle (simple ou condensé) Ar R DCI ND Avlocardyl® Hémipralon® -CH(CH₃)₂ propranolol + gnr HO Corgard[®] -C(CH₃)₃ nadolol HO Digaol[®] -C(CH₃)₃ Timacor® timolol (maléate) Viken® -CH(CH₃)₂ pindolol Visken-quinze® Artex[®] -C(CH₃)₃tertatolol (HCI) Mikelan® cartéolol -C(CH₃)₃(HCI)


Caractères physico-chimiques:

--hydrophilie/lipophilie:

les plus
hydrophiles
lipophiles
aténolol, nadolol
sotalol.
propranolol,

Relation structure-activité:

- -les B-bloquants présentent des relations structurales étroites avec les catécholamines.
- -l'enchainement B-amino-alcool est nécessaire à l'effet sur les récepteurs adrénergiques.
- -la présence sur la chaine basique d'un substituant encombrant Contribue à l'affinité pour les récepteurs β.

On a trois sites de liaison avec les récepteurs adrénergiques:

- -gpt aryle (intéraction π).
- -OH (liaison hydrogène).
- -azote (liaison ionique).

La position relative de ces trois pôles d'intéraction s'avère essentielle à l'activité des B-bloquants.

Mécanisme d'action:

```
B1:- inotrope _ (contractilité),
bathmotrope _ (excitabilité)

Blocage B

-dromotrope _ (conductibilité)

chronotrope_ (fréquence cardiaque)

( cœur )
```

B2: -vaso et bronchoconstriction(vaisseaux et bronches)

Effets pharmacologiques:

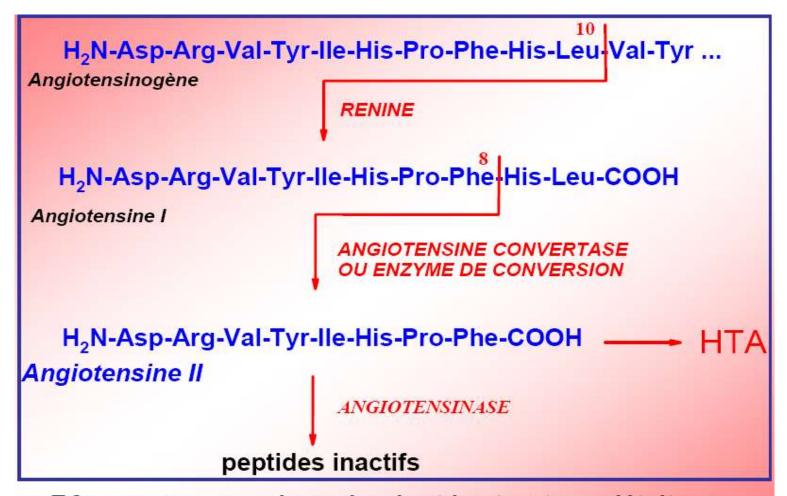
inhibition **B-adrénergique**:

```
*acébutolol, * aténolol (β-bloquants cardiosélectifs)
-cœur: β1 => :- inotrope _,bathmotrope _
-dromotrope _,chronotrope_
```

- *Propranolol (β-bloquant non-cardioséléctif)
- -cœur β1
- -vaisseaux: β2 => vasoconstriction
- -bronches: B2 => bronchoconstriction
- -rein: β1=>\ rénine
- -oeil: β1=> de la pression intra-oculaire

Indications:

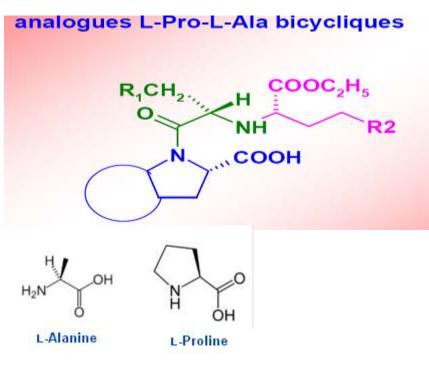
- -HTA
- -insuffisance coronarienne
- -arythmies
- -glaucome


3. ANTAGONISTES DU SYSTÈME RÉNINE-ANGIOTENSINE

Deux classes:

-les inhibiteurs de l'enzyme de convertion IEC

-les antagonistes des récepteurs AT-1 de l'angiotensine II

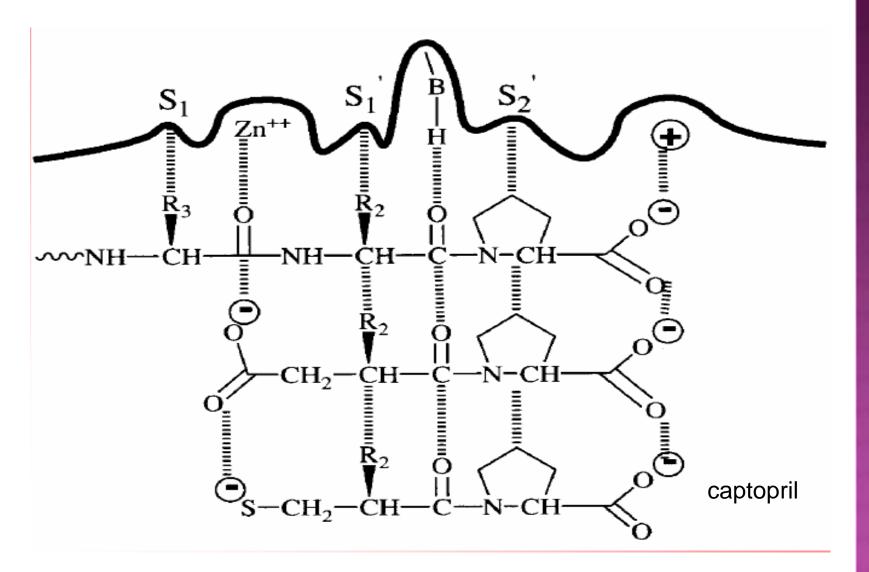

3.1. Les inhibiteurs de l'enzyme de conversion

EC = enzyme membranaire dont la structure n'était pas connue à l'époque.

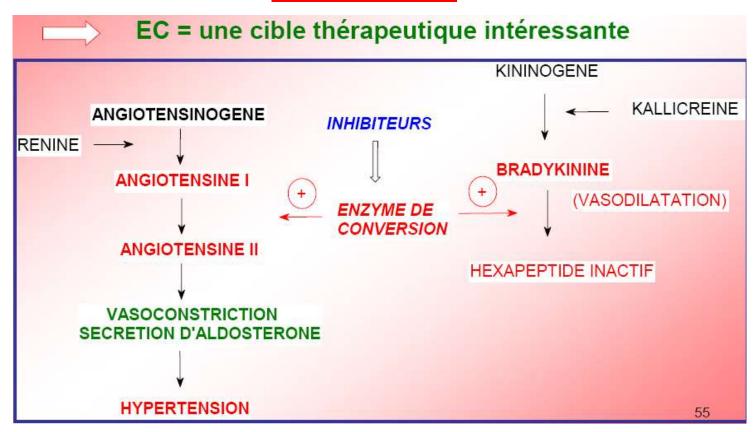
56

Les principaux composés:

Hétérocycle	R ₁	R ₂	DCI	ND
СМ, СООН	н	C ₆ H ₅	énalapril (maléate)	Co-Rénitec® Rénitec®
СООН	н	C ₆ H ₅	quinapril (HCI)	Acuilix® Acuitel® Korec® Korétic®


Relation structure-affinité EC:

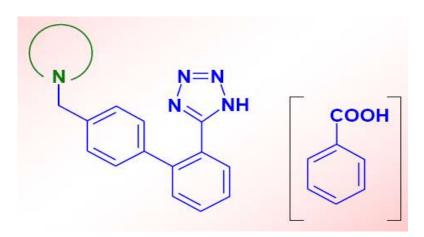
Captopril= analogue de L-Proline-L-Alanine: a 3 sites de liaison


thiol: complexation du zinc,

carboxamide: liaison H,

carboxylate: liaison ionique

Mode d'action:

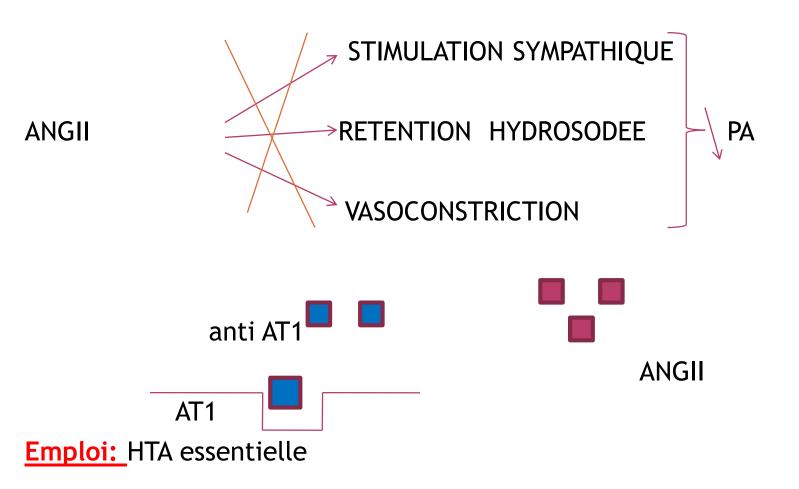

Indications:

- -HTA essentielle
- -HTA du diabétique
- -Néphropathie
- -Insuffisance cardiaque

3.2. Les antagonistes des récepteurs AT1 de l'angiotensine II:

Structure chimique:

Ce sont des dérivés de biphényle, porteur d'un Tétrazole (équivalent à Un acide carboxylique.



Les principaux produits:

Hétérocycle	DCI	ND
N CI OH	losartan (sel de K ⁺)	Cozaar [®] Fortzaar [®] Hyzaar [®]
N O	irbésartan	Aprovel® CoAprovel®
н ₃ с сн ₃	valsartan	CoTareg [®] Nisis [®] Nisisco [®] Tareg [®]

Mécanisme d'action:

- -c'est un antagoniste sélectif des récepteurs de l'ANGII.
- -bloque la liaison de l'ANGII à ses récepteurs ,dont il empèche les effets hypertensifs de se manifester.

4. LES ANTAGONISTES CALCIQUES

Historique:

Le concept d'antagoniste calcique a été introduit indépendamment à la fin des années 1960 par FLECKENSTEIN et par GODFRAIND (Belgique).

Ils ont remarqué qu'Au cours de l'HTA, une Îde la [Ca++] intracellulaire qui favorise des RP et de la PA

=> inhibiteurs des canaux Ca2+de classe L (Low inactivation),

se lient sur les boucles extracellulaires de la sous-unité α de ces canaux, impliquée dans la formation des pores ioniques.

Structure chimique: on a trois classes:

- -DHP: NIFEDIPINE (ADALATE*) => Vaisseaux
- -Phenylalkylamine: VERAPAMIL (ISOPTINE*) => Cœur
- -Benzothiazepines: DILTIAZEM (TILDIEM*) => Mixte

Les principaux produits utilisés en thérapeutique:

A -1,4-dihydropyridines.

Structure chimique:

R	R ₁	R ₂	х	Y	DCI	ND
н	CH ₃	СН₃	н	NO ₂	nifédipine	Adalate®
н	CH ₃	(1)	NO ₂	Н	nicardipine	Loxen®
H ₂ N-(CH ₂) ₂ -O	C₂H₅	СН	₃ H	CI	amlodipine (bésilate)	Amlor®

Structure et nomenclature:

EX: Nifédipine

c'est 2,6-diméthyl-3,5 -dicarboxylate de diméthyl - 4-(2-nitrosophényl) -1,4-dihydropyridine

B- Phényl alkylamines:

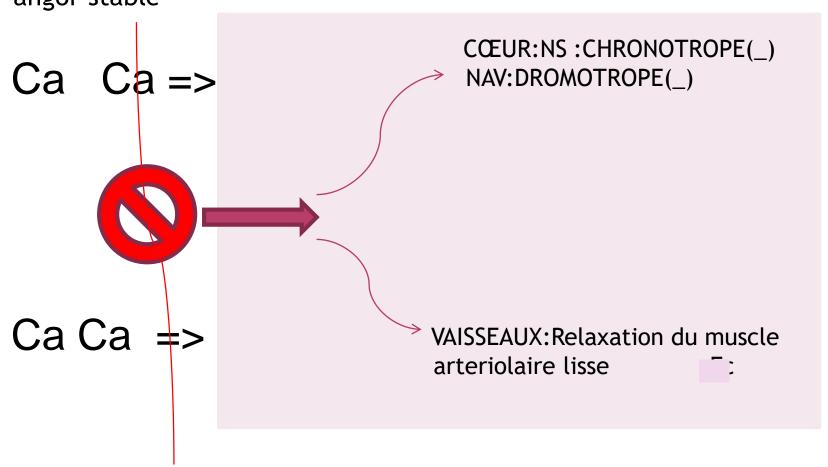
VERAPAMIL

Structure et nomenclature:

(2*RS*)-2-(3,4-diméthoxyphényl)-5[[2-(3,4-diméthoxyphényl)éthyl] (méthyl)amino]-2(1-méthyléthyl)pentanenitrile

C - 1,5- Benzothiazépines:

DILTIAZEM:


Structure chimique et nomenclature:

3-cis acétoxy-5-Diméthylaminoéthyl-2-cis (4-méthoxyphényl)-4-oxo-2,3-dihydro-1,5 benzothiazépine

Indications:

-HTA

-angor stable

